
Bananagrams Tile Extraction and Letter Recognition

for Rapid Word Suggestion

Steven Leung, Steffi Perkins, and Colleen Rhoades

Department of Bioengineering

Stanford University

Stanford, CA

Abstract—Bananagrams is a competitive free-form

crossword-building game that hinges on a player’s ability to

recognize words from a pool of available letter tiles. This paper

describes an Android application that may assist a player in

word formation. The application takes an image of letter tiles as

input and outputs a list of possible words. This is performed

using a series of image processing steps for tile extraction and

letter recognition.

Keywords—Bananagrams; tile extraction; letter recognition;

locally adaptive thresholding; Hough transform; Hu moments;

Android

I. INTRODUCTION

Bananagrams is a popular crossword-building game where

players use lettered tiles to build their own free-form

crosswords. Players continue drawing new tiles and

incorporating them into their crosswords until all tiles in the

communal resource pool are gone. The first player to complete

a crossword with all of his or her tiles wins the game;

therefore players who can quickly identify possible words to

incorporate into their crosswords have the advantage. This

paper describes an Android application that utilizes image

processing to provide a list of possible words that can be built

from the tiles in a player’s possession. The application uses

the phone camera to take a picture of a player’s tiles, extracts

the tiles based on region properties, rotates them, and then

compares their Hu moments with those of letter templates in a

database to find a best match. The string of letters from the

extracted tiles is then sent to an online anagram solver and the

generated list of possible words is returned to the player on the

phone screen. Players have the option of including additional

letters in the query string, since new words need to be

incorporated into an already existing crossword.

Fig. 1. Example query image used as input to the Android application.

II. IMAGE PROCESSING ALGORITHM

A. Image Acquisition and Pre-Processing

En face color images were taken with a phone camera and
sent to MATLAB. An example image is shown in Fig. 1. The
images were converted to grayscale then binarized using a
locally adaptive thresholding windowing approach [1]. Each
image was divided into approximately 100 x 100 windows and
the variance in pixel intensity was calculated for each window.
If the variance within a window was lower than a given
threshold, all pixels in that window were set to background (0,
black). Otherwise, Otsu’s method was performed [1]. The
resulting images contained many connected regions that
formed outlines of letter tiles, as shown in Fig. 2A. Some
portions of the tile face were set to background because of low
variance in pixel intensities.

B. Tile Extraction

Fig. 2 shows the process of tile extraction. Convex hull
areas of connected regions were combined to produce a tile
mask (Fig. 2B). The convex hull is the smallest convex
polygon that contains every pixel in a region. Tile regions were
isolated using selection criteria of area, eccentricity, and Euler
number [1]. The bounding boxes of isolated tile regions were
used to extract the tiles from the original grayscale images
(Fig. 2C). Hough transforms were performed on edge maps to
determine tile orientations [2,3]. The tiles were then rotated
and cropped so the edges of the image lined up with the edges
of the tiles (Fig. 2D).

Fig. 2. Intermediate images of the image processing algorithm. A) Result of

locally adaptive thresholding. B) Tile mask constructed from region convex

hull areas. C) Bounding boxes of extracted tiles. D) Process to rotate and crop

tiles extracted from grayscale image.

 A B C

 D

C. Hu Moment Calculation

Each grayscale extracted tile was globally binarized using

Otsu’s method. In addition, holes in letters {A, B, D, O, P, Q,

R} were filled with white pixels (justification for this decision

is outlined in Appendix B). The first four Hu moments were

then calculated for each extracted tile, as shown in equations

(5) – (8). The moments are invariant to scale, rotation, and

translation [4,5].

Equation (1) was used to calculate raw image moments of

the image I(x,y). i and j designate the moment orders in the x-

and y-directions. Equation (2) was used to calculate the

centroid (,ӯ). Equations (3) and (4) were used to calculate the

normalized central moments ηij. These values were required in

order to calculate the Hu moments.

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

D. Template Database

26 different letter tiles were used to generate a database of
template letters; the pictures were taken with a digital camera
with the same conditions and parameters to ensure consistency
across the images. The first four Hu moments were calculated
for each template and included in the database.

E. Letter Recognition

For any given query image, letter tiles were extracted and
Hu moments were calculated for each tile. The L1 distance was
calculated between the Hu moments of each extracted tile and
database template pair [6]. The minimum distance signified the
best match, and the letter corresponding to the best match was
recorded in a string array. The final string included the best
letter match for each extracted tile.

Fig. 3. Screenshot of the Android application interface, with an example

query image, string of extracted letters, additional inputted letter, and

generated list of possible words.

The code for the MATLAB implementation of the image
processing algorithm, as well as a video demonstration, are
available in the supplementary information.

Although locally adaptive thresholding and Hu moments
were implemented in the final algorithm, a variety of
alternative methods were explored. These other methods are
detailed in Appendix C.

III. ANDROID APPLICATION INTERFACE

Implementing the image processing algorithm on Android

makes the system practical for real-time use during a game of

Bananagrams. The code for the application, as well as a video

demonstration, are available in the supplementary information.

A. Image Acquisition

The Android application allows the user to take a picture

of his or her tiles using the phone camera.

B. Server Communication

The picture is sent as a query image to the server, which

processes the image using the algorithm described previously.

The server returns two pieces of information: the processed

image and a text file with the string of extracted letters [7]. A

screenshot of the phone interface is shown in Fig. 3. The

processed image is displayed on the right side of the

application layout. The string is displayed above the image,

which allows the user to verify if the letters were correctly

recognized.

C. Word Suggestion

The user is allowed to input additional letters on the left

side of the application. During gameplay, words must be

constructed around existing words in the crossword puzzle;

this feature ensures that the user can add the letter(s) he or she

would like to build off of. Upon pressing the “Find Words”

button, the application sends the query string and any

additional letters to an anagram-solving website. The

website’s results are parsed into a scrollable text box on the

bottom left of the application view. With these results, the

player can quickly decide which word to add to the board with

his or her tiles.

There were some challenges in the development of the

Android application; the details can be found in Appendix D.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ø

A 25 0

B 0 25 0

C 0 0 25 0

D 0 0 0 25 0

E 0 0 0 0 24 0 1

F 0 0 0 0 0 25 0

G 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 2 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

J 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0

Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 1

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0

U 0 24 0 0 0 0 0 1

V 0 25 0 0 0 0

W 0 24 0 0 0 1

X 0 25 0 0

Y 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 23 0 1

Z 0 25

Predicted Letter
A

ct
u

al
 L

e
tt

e
r

Fig. 4. Confusion matrix showing letter misclassifications with the test

images. The column “Ø” corresponds to an error when a tile was not extracted

due to uneven illumination. The algorithm was able to correctly recognize

each letter most of the time, although small similarities in Hu moments
occasionally led to misclassification of E, H, and Y. Red boxes indicate where

letters were misclassified, yellow boxes indicate where tiles were not

detected, and green boxes indicate letters recognized with 100% accuracy.

IV. RESULTS

25 test images were taken for each letter tile. The image

processing algorithm was performed on each image. Letter

recognition accuracy (the number of correct matches divided

by 25) was determined for each letter. Although most letters

were recognized with 100% accuracy, a few were not. These

are highlighted in the confusion matrix in Fig. 4.

The algorithm was able to correctly recognize letters most

of the time. There were several mismatches with letters E, H,

and Y due to unexpected similarities between Hu moments of

the extracted tiles and incorrect database letters. It is important

to note that I, R, U, W, and Y each had one failed detection

due to uneven illumination. In addition, one non-tile region

was detected in each of four different images, also due to

uneven illumination.

V. DISCUSSION

The first four Hu moments, as calculated with equations

(5) – (8), are calculated from normalized central moments.

The central moments contain information about the

distribution of white pixels along the x- and y-directions of the

binarized tile images. These distributions are approximations

of 1-D probability distribution functions (pdfs) in each of the

coordinate directions. Changes in the pdfs affect the central

moment values, and thus the Hu moment values. If the L1

distance between an extracted tile and an incorrect template

tile is smaller than the L1 distance between the extracted tile

and the correct template tile, then a misclassification can

occur. This explains some of the results in Fig. 4.

Fig. 5. The extracted Y tile from the test image where Y was misclassified as

L. A) The extracted grayscale tile for the letter Y. The original image was

binarized using locally adaptive thresholding. Some portions of the tile were
assigned to background due of low variance within a window. B) A small

portion of the unfilled tile background was treated as part of the letter Y due

to 8-pixel neighborhood connectivity. C) Including the extra region alters the
Hu moments and throws off letter classification. The extracted Y tile is

therefore misclassified as an L.

For example, in one test image the letter E was

misclassified as Z. It seems plausible that this could

occasionally occur due to morphological similarities between

the letters: they both have long horizontal lines at the top and

bottom, which could lead to similar central and Hu moments.

The first Hu moment is the sum of the two normalized central

moments η20 and η02, which represent the variance of the letter

in the x- and y-directions. This Hu moment is therefore

affected by changes in the 1-D letter pdfs. In this example, the

first Hu moment is 0.4516 for the extracted tile, 0.4156 for the

E template, and 0.4409 for the Z template. The first Hu

moment of the Z template is closer in value to that of the

extracted tile. This helps explain the misclassification, because

the L1 distance between the extracted tile and the template Z is

smaller than that of the extracted tile and the template E.

Another more complicated example is one instance where

Y is misclassified as L, which is detailed in Fig. 5. There is no

clear shape similarity that leads to similar Hu moments, but

further examination of the particular test image is

illuminating. The locally adaptive thresholding during tile

extraction leads to a few areas of the tile being assigned to

background because of low window variance (Fig. 5A). Most

of these are subsequently filled because the largest white

section of the region is selected as the letter. Unfortunately, in

this case, one of the side sections is connected to the letter by

an 8-pixel neighborhood. It is therefore included in the

extracted tile and is used when calculating the Hu moments

(Fig. 5B). This changes the 1-D probability distributions of the

letter, and thus its central and Hu moments. For the extracted

tile, the first Hu moment is 0.5878. The first Hu moment for

the Y template is 0.4430, while the first Hu moment for the L

template is 0.5226. The first Hu moment for the L is closer in

value to the first Hu moment of the extracted tile, and explains

the misclassification in this case (Fig. 5C).

VI. FUTURE DEVELOPMENT

The current Android application performs robustly when

tile images meet the following criteria:

 Tiles are placed on a dark, non-reflective surface.

 Tile images are taken en face, without perspective

distortions.

 The camera flash is not used to maintain high image

contrast.

 The tiles are evenly illuminated.

 The letters on the tiles are in focus.

However, it is desirable to make the algorithm more robust

to perspective distortions, uneven illumination, and low image

contrast. Locally adaptive thresholding significantly improves

performance under uneven illumination compared to other

methods (as described in Appendix C), but could potentially

be refined by using smaller windows and/or adaptive variance

thresholds. Robustness to perspective distortions can be

implemented by estimating homographies between extracted

and template tiles. This mapping could be calculated by

comparing corresponding FAST keypoints between the

extracted tiles and the templates [8,9]. SIFT keypoints would

not work well, as we found during development, because the

tiles do not have enough texture to generate a large number of

keypoints [8,10].

As seen in the supplementary video demonstration of the

Android application, the application currently has trouble

controlling the camera focus. As a result, the query images are

blurry and letters are misclassified. Implementing either an

auto-focusing method or a user-dependent focusing method

would ensure accurate letter recognition by the image

processing algorithm. Additionally, the speed of the

application could be improved by performing image

processing on the phone instead of on the server. Although the

application currently returns results in under four seconds, the

processing time is limited by the phone’s ability to contact the

server. Implementing image processing on the phone would

require writing functions in Java/C++ and using the OpenCV

function (instead of the MATLAB function) to calculate Hu

moments. The speed of the application could also be improved

by caching previous results on the phone. The anagram

website query step can be skipped if a previous set of letters

has been queried before.

ACKNOWLEDGMENT

The authors would like to thank Huizhong Chen for his
advice in designing the image processing algorithm, David
Chen for his help in designing and implementing the Android
application, and Professor Bernd Girod for teaching the EE 368
course in Winter 13-14.

REFERENCES

[1] B. Girod, “Image segmentation” [Lecture notes]. January, 2014.

[2] B. Girod, “Edge detection” [Lecture notes]. February, 2014.

[3] P. V. C. Hough, “Method and means for recognizing complex patterns,”
US Patent 3 069 654, Dec 18, 1962.

[4] M. Hu, “Visual pattern recognition by moment invariants,” IRE Trans.
Inf. Theory, vol. 8, no. 2, pp. 179-187, February 1962.

[5] M. AlHourani. (2011, May 6). Hu’s Seven Moments Invariant (Matlab
Code for invmoments.m) [Blog post]. Available: http://limitless-
thoughts.blogspot.com/2011/05/hus-seven-moments-invariant-matlab-
code.html

[6] “EE 368 Homework 7: Problem 3,” unpublished.

[7] D. Chen, “Mobile image processing” [Lecture notes]. January, 2014.

[8] B. Girod, “Feature-based image matching” [Lecture notes]. February,
2014.

[9] B. Girod, “Keypoint detection” [Lecture notes]. February, 2014.

[10] B. Girod, “Scale-space image processing” [Lecture notes]. February,
2014.

APPENDIX A: CONTRIBUTIONS

A. Steven Leung

Steven implemented the pre-processing and letter

recognition stages of the algorithm in MATLAB. He also

implemented the application’s anagram solving component in

Android.

B. Steffi Perkins

Steffi implemented the tile extraction stage of the

algorithm in MATLAB and created a database of template and

test images. She also characterized the accuracy of the

algorithm.

C. Colleen Rhoades

Colleen developed a prototype of the Android application.

She designed an interface that could capture an image with the

phone camera, query a local server that she set up, and display

the results.

APPENDIX B: JUSTIFICATION FOR FILLING HOLES IN LETTERS

An initial attempt of Hu moment-based letter recognition

(with unfilled letter holes) was not very accurate, as shown in

the confusion matrix in Fig. B1. The letter G was often

misclassified as the letter Q and the letter D was misclassified

as G or Q. This occurred when the L1 distance between the

extracted G and the Q template was smaller than the L1

distance between the two Gs—a result of inconsistent Hu

moments due to inter-tile differences in letter shape.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ø

A 25 0

B 0 25 0

C 0 0 25 0

D 0 0 0 16 0 0 5 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0

E 0 0 0 0 25 0

F 0 0 0 0 0 25 0

G 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0

H 0 0 0 2 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

J 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0

Q 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 1

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0

U 0 24 0 0 0 0 0 1

V 0 25 0 0 0 0

W 0 24 0 0 0 1

X 0 25 0 0

Y 0 24 0 1

Z 0 25

Predicted Letter

A
ct

u
al

 L
e

tt
e

r

Fig. B1. Confusion matrix showing letter misclassifications with the test

images using unfilled letter holes. The column “Ø” corresponds to an error

when a tile was not extracted due to uneven illumination. The algorithm had

more misclassifications than when filled letters were used in calculating the

Hu moments (Fig. 4). Red boxes indicate where letters were misclassified,
yellow boxes indicate where tiles were not detected, and green indicates that a

letter was recognized with 100% accuracy.

As outlined in the discussion, this misclassification can be

explained in terms of normalized central moments, which

represent the variance of the different letters in the x- and y-

directions. When the distribution of white pixels for the letters

G and Q are projected onto the x-axis, the circular shapes of

both letters generate similar probability mass functions, as is

shown in Fig. B2. The curved tail of the Q and the horizontal

line in the middle of the G have similar contributions when

Fig. B2. Comparison of white pixel distributions along the x- and y-axes for

the G and the unfilled Q. The distributions look similar, especially along the

x-axis, which may lead to misclassification between the two letters.

Fig. B3. Comparison of the white pixel distributions along the x- and y-axes

for the G and the filled Q. The distributions look significantly different, and

therefore the letters are more easily distinguished by the algorithm.

Fig. B4. Changes in L1 distance resulting from filling letter holes. Filling the

holes increased the L1 distance between the letters with holes {A, B, D, O, P,

Q, R} and other letters of the alphabet, which improved the accuracy of the

algorithm. Although the L1 distances decreased between letters within the set,
this did not affect the accuracy of the algorithm in distinguishing between

those letters.

projected onto the x-axis. Thus, both letters would have

similar normalized central moments in the x-direction.

Likewise, the normalized central moments in the y-direction

would also be similar. Small structural differences in the

extracted G (compared to the template G) could make its

central moments more closely resemble the central moments

of the Q template. This would influence the L1 distance and

may therefore also influence the best letter match.

We found that filling in letter holes avoided problems with

central moment similarities, which can be seen in Fig. B3. In

fact, filling in holes for the letter set {A, B, D, O, P, Q, R}

increased L1 distances between non-set letters, as shown in

Fig. B4. However, L1 distances decreased between letters

within the set. Nevertheless, using this new method for Hu

moment calculation, the algorithm did not return any

misclassifications between letters in the set.

APPENDIX C: INVESTIGATION OF OTHER METHODS

We explored a variety of different methods for image

processing before ultimately pursuing locally adaptive

thresholding and Hu moments. These alternatives, along with

their respective shortcomings, are detailed below.

D. Pre-Processing

1) Global Binarization

Global binarization with Otsu’s method worked well only

when the image background was much darker relative to the

letter tiles. In addition, slight changes in scene illumination

yielded a significant number of artifacts that hindered tile

extraction.

2) Laplacian of Gaussian Edge Detector

Under restrictive conditions (dark background, en face

image acquisition, and even illumination), we were able to get

closed contours of tile edges. However, the method was

unstable with uneven illumination.

3) Canny Edge Detector

Also worked under restrictive conditions but was unstable

with uneven illumination. It was also difficult to select strong

and weak edge threshold values that were robust across

different imaging conditions.

4) Morphological Edge Detector

Tile edges were detected by subtracting the original

grayscale image from its dilated image. However, the method

failed when tiles were close to one another—image dilation

caused the boundaries of two tiles to fuse. Problems also arose

when images had uneven illumination.

5) Rank Filter Background Subtraction

The 10th ranked value was selected from 10 x 10 windows

in order to “capture” uneven illumination on the image.

However, the algorithm had a very long runtime and was

ineffective in removing uneven illumination when the result

was subtracted from the original image.

E. Tile Extraction

1) MSERs

Maximally Stable Extremal Regions worked well for a

small subset of images given a set of input parameters.

However, each set of input parameters was not robust across

different imaging conditions. The method also failed for

images with uneven illumination.

F. Letter Recognition

1) Hit-Miss Filter

We first attempted to perform letter detection using hit-

miss filter recognition by erosion. However, variations in

image size and tile alignment were difficult to account for.

The method was also not invariant to scale and rotation, and

was therefore quickly deemed impractical.

2) SIFT Descriptors

We next attempted to match SIFT feature descriptors

between tiles and template images. However, very few SIFT

keypoints were detected due to the lack of texture to the letter

tiles; thus we were unable to perform RANSAC. Additionally,

problems arose when images had uneven illumination.

APPENDIX D: CHALLENGES WITH ANDROID PROGRAMMING

There were a number of technical obstacles surrounding

implementation on the Android phone.

A. Asynchronous Server Tasks

Because server tasks were asynchronous, there were

several issues regarding communication timing. The image

taken by the camera was first processed on a local server using

MATLAB. MATLAB saves the processed image as well as a

text file containing the string of recognized letters. A second

call to the server loads the saved image and string files into the

phone display. In order for the algorithm to function in the

correct order, the timing of these server calls had to be

coordinated to address timing issues.

B. Wi-Fi Connection

The Android phone requires access to the anagram-solving

website through a Wi-Fi or mobile data connection. However,

the application did not work reliably on all wireless networks.

Specifically, it works on the Stanford Residences network, but

not on the Stanford network.

SUPPLEMENTARY INFORMATION

A. Leung_Perkins_Rhoades.wmv

This video demonstration shows how the image processing

algorithm works on a sample test image in MATLAB. It also

shows how the final Android application works. Letters were

misclassified on the phone due to problems with the camera

autofocus, which is addressed in the future development

section of the paper.

B. LeungPerkinsRhoades_AndroidCode.zip

The code for the Android application is included in this

archive.

C. LeungPerkinsRhoades_MatlabCode.zip

The code for the image processing algorithm in MATLAB

is included in this archive.

