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Abstract—Bananagrams is a competitive free-form 

crossword-building game that hinges on a player’s ability to 

recognize words from a pool of available letter tiles. This paper 

describes an Android application that may assist a player in 

word formation. The application takes an image of letter tiles as 

input and outputs a list of possible words. This is performed 

using a series of image processing steps for tile extraction and 

letter recognition.  
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I. INTRODUCTION 

Bananagrams is a popular crossword-building game where 

players use lettered tiles to build their own free-form 

crosswords. Players continue drawing new tiles and 

incorporating them into their crosswords until all tiles in the 

communal resource pool are gone. The first player to complete 

a crossword with all of his or her tiles wins the game; 

therefore players who can quickly identify possible words to 

incorporate into their crosswords have the advantage. This 

paper describes an Android application that utilizes image 

processing to provide a list of possible words that can be built 

from the tiles in a player’s possession. The application uses 

the phone camera to take a picture of a player’s tiles, extracts 

the tiles based on region properties, rotates them, and then 

compares their Hu moments with those of letter templates in a 

database to find a best match. The string of letters from the 

extracted tiles is then sent to an online anagram solver and the 

generated list of possible words is returned to the player on the 

phone screen. Players have the option of including additional 

letters in the query string, since new words need to be 

incorporated into an already existing crossword. 

 

  

Fig. 1. Example query image used as input to the Android application. 

II. IMAGE PROCESSING ALGORITHM 

A. Image Acquisition and Pre-Processing 

En face color images were taken with a phone camera and 
sent to MATLAB. An example image is shown in Fig. 1. The 
images were converted to grayscale then binarized using a 
locally adaptive thresholding windowing approach [1]. Each 
image was divided into approximately 100 x 100 windows and 
the variance in pixel intensity was calculated for each window. 
If the variance within a window was lower than a given 
threshold, all pixels in that window were set to background (0, 
black). Otherwise, Otsu’s method was performed [1]. The 
resulting images contained many connected regions that 
formed outlines of letter tiles, as shown in Fig. 2A. Some 
portions of the tile face were set to background because of low 
variance in pixel intensities. 

B. Tile Extraction 

Fig. 2 shows the process of tile extraction. Convex hull 
areas of connected regions were combined to produce a tile 
mask (Fig. 2B). The convex hull is the smallest convex 
polygon that contains every pixel in a region. Tile regions were 
isolated using selection criteria of area, eccentricity, and Euler 
number [1]. The bounding boxes of isolated tile regions were 
used to extract the tiles from the original grayscale images 
(Fig. 2C). Hough transforms were performed on edge maps to 
determine tile orientations [2,3]. The tiles were then rotated 
and cropped so the edges of the image lined up with the edges 
of the tiles (Fig. 2D). 

 
Fig. 2. Intermediate images of the image processing algorithm. A) Result of 

locally adaptive thresholding. B) Tile mask constructed from region convex 

hull areas. C) Bounding boxes of extracted tiles. D) Process to rotate and crop 

tiles extracted from grayscale image. 
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C. Hu Moment Calculation 

Each grayscale extracted tile was globally binarized using 

Otsu’s method. In addition, holes in letters {A, B, D, O, P, Q, 

R} were filled with white pixels (justification for this decision 

is outlined in Appendix B). The first four Hu moments were 

then calculated for each extracted tile, as shown in equations 

(5) – (8). The moments are invariant to scale, rotation, and 

translation [4,5]. 

Equation (1) was used to calculate raw image moments of 

the image I(x,y). i and j designate the moment orders in the x- 

and y-directions. Equation (2) was used to calculate the 

centroid (  ,ӯ). Equations (3) and (4) were used to calculate the 

normalized central moments ηij. These values were required in 

order to calculate the Hu moments. 
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D. Template Database 

26 different letter tiles were used to generate a database of 
template letters; the pictures were taken with a digital camera 
with the same conditions and parameters to ensure consistency 
across the images. The first four Hu moments were calculated 
for each template and included in the database. 

E. Letter Recognition 

For any given query image, letter tiles were extracted and 
Hu moments were calculated for each tile. The L1 distance was 
calculated between the Hu moments of each extracted tile and 
database template pair [6]. The minimum distance signified the 
best match, and the letter corresponding to the best match was 
recorded in a string array. The final string included the best 
letter match for each extracted tile. 

 
Fig. 3. Screenshot of the Android application interface, with an example 

query image, string of extracted letters, additional inputted letter, and 

generated list of possible words. 

The code for the MATLAB implementation of the image 
processing algorithm, as well as a video demonstration, are 
available in the supplementary information. 

Although locally adaptive thresholding and Hu moments 
were implemented in the final algorithm, a variety of 
alternative methods were explored. These other methods are 
detailed in Appendix C. 

III. ANDROID APPLICATION INTERFACE 

Implementing the image processing algorithm on Android 

makes the system practical for real-time use during a game of 

Bananagrams. The code for the application, as well as a video 

demonstration, are available in the supplementary information. 

A. Image Acquisition 

The Android application allows the user to take a picture 

of his or her tiles using the phone camera. 

B. Server Communication 

The picture is sent as a query image to the server, which 

processes the image using the algorithm described previously. 

The server returns two pieces of information: the processed 

image and a text file with the string of extracted letters [7]. A 

screenshot of the phone interface is shown in Fig. 3. The 

processed image is displayed on the right side of the 

application layout. The string is displayed above the image, 

which allows the user to verify if the letters were correctly 

recognized. 

C. Word Suggestion 

The user is allowed to input additional letters on the left 

side of the application. During gameplay, words must be 

constructed around existing words in the crossword puzzle; 

this feature ensures that the user can add the letter(s) he or she 

would like to build off of. Upon pressing the “Find Words” 

button, the application sends the query string and any 

additional letters to an anagram-solving website. The 

website’s results are parsed into a scrollable text box on the 

bottom left of the application view. With these results, the 

player can quickly decide which word to add to the board with 

his or her tiles. 

 

There were some challenges in the development of the 

Android application; the details can be found in Appendix D. 



A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ø

A 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

F 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 2 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

J 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0

Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 1

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0

U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 1

V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 1

X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0

Y 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 23 0 1

Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25
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Fig. 4. Confusion matrix showing letter misclassifications with the test 

images. The column “Ø” corresponds to an error when a tile was not extracted 

due to uneven illumination. The algorithm was able to correctly recognize 

each letter most of the time, although small similarities in Hu moments 
occasionally led to misclassification of E, H, and Y. Red boxes indicate where 

letters were misclassified, yellow boxes indicate where tiles were not 

detected, and green boxes indicate letters recognized with 100% accuracy. 

IV. RESULTS 

25 test images were taken for each letter tile. The image 

processing algorithm was performed on each image. Letter 

recognition accuracy (the number of correct matches divided 

by 25) was determined for each letter. Although most letters 

were recognized with 100% accuracy, a few were not. These 

are highlighted in the confusion matrix in Fig. 4. 

The algorithm was able to correctly recognize letters most 

of the time. There were several mismatches with letters E, H, 

and Y due to unexpected similarities between Hu moments of 

the extracted tiles and incorrect database letters. It is important 

to note that I, R, U, W, and Y each had one failed detection 

due to uneven illumination. In addition, one non-tile region 

was detected in each of four different images, also due to 

uneven illumination. 

V. DISCUSSION 

The first four Hu moments, as calculated with equations 

(5) – (8), are calculated from normalized central moments. 

The central moments contain information about the 

distribution of white pixels along the x- and y-directions of the 

binarized tile images. These distributions are approximations 

of 1-D probability distribution functions (pdfs) in each of the 

coordinate directions. Changes in the pdfs affect the central 

moment values, and thus the Hu moment values. If the L1 

distance between an extracted tile and an incorrect template 

tile is smaller than the L1 distance between the extracted tile 

and the correct template tile, then a misclassification can 

occur. This explains some of the results in Fig. 4. 

 
Fig. 5. The extracted Y tile from the test image where Y was misclassified as 

L. A) The extracted grayscale tile for the letter Y. The original image was 

binarized using locally adaptive thresholding. Some portions of the tile were 
assigned to background due of low variance within a window. B) A small 

portion of the unfilled tile background was treated as part of the letter Y due 

to 8-pixel neighborhood connectivity. C) Including the extra region alters the 
Hu moments and throws off letter classification. The extracted Y tile is 

therefore misclassified as an L. 

For example, in one test image the letter E was 

misclassified as Z. It seems plausible that this could 

occasionally occur due to morphological similarities between 

the letters: they both have long horizontal lines at the top and 

bottom, which could lead to similar central and Hu moments. 

The first Hu moment is the sum of the two normalized central 

moments η20 and η02, which represent the variance of the letter 

in the x- and y-directions. This Hu moment is therefore 

affected by changes in the 1-D letter pdfs. In this example, the 

first Hu moment is 0.4516 for the extracted tile, 0.4156 for the 

E template, and 0.4409 for the Z template. The first Hu 

moment of the Z template is closer in value to that of the 

extracted tile. This helps explain the misclassification, because 

the L1 distance between the extracted tile and the template Z is 

smaller than that of the extracted tile and the template E. 

Another more complicated example is one instance where 

Y is misclassified as L, which is detailed in Fig. 5. There is no 

clear shape similarity that leads to similar Hu moments, but 

further examination of the particular test image is 

illuminating. The locally adaptive thresholding during tile 

extraction leads to a few areas of the tile being assigned to 

background because of  low window variance (Fig. 5A). Most 

of these are subsequently filled because the largest white 

section of the region is selected as the letter.  Unfortunately, in 

this case, one of the side sections is connected to the letter by 

an 8-pixel neighborhood. It is therefore included in the 

extracted tile and is used when calculating the Hu moments 

(Fig. 5B). This changes the 1-D probability distributions of the 

letter, and thus its central and Hu moments. For the extracted 

tile, the first Hu moment is 0.5878. The first Hu moment for 

the Y template is 0.4430, while the first Hu moment for the L 

template is 0.5226. The first Hu moment for the L is closer in 

value to the first Hu moment of the extracted tile, and explains 

the misclassification in this case (Fig. 5C). 

VI. FUTURE DEVELOPMENT 

The current Android application performs robustly when 

tile images meet the following criteria: 

 

 Tiles are placed on a dark, non-reflective surface. 

 Tile images are taken en face, without perspective 

distortions. 



 The camera flash is not used to maintain high image 

contrast. 

 The tiles are evenly illuminated. 

 The letters on the tiles are in focus. 

 

However, it is desirable to make the algorithm more robust 

to perspective distortions, uneven illumination, and low image 

contrast. Locally adaptive thresholding significantly improves 

performance under uneven illumination compared to other 

methods (as described in Appendix C), but could potentially 

be refined by using smaller windows and/or adaptive variance 

thresholds. Robustness to perspective distortions can be 

implemented by estimating homographies between extracted 

and template tiles. This mapping could be calculated by 

comparing corresponding FAST keypoints between the 

extracted tiles and the templates [8,9]. SIFT keypoints would 

not work well, as we found during development, because the 

tiles do not have enough texture to generate a large number of 

keypoints [8,10]. 

As seen in the supplementary video demonstration of the 

Android application, the application currently has trouble 

controlling the camera focus. As a result, the query images are 

blurry and letters are misclassified. Implementing either an 

auto-focusing method or a user-dependent focusing method 

would ensure accurate letter recognition by the image 

processing algorithm. Additionally, the speed of the 

application could be improved by performing image 

processing on the phone instead of on the server. Although the 

application currently returns results in under four seconds, the 

processing time is limited by the phone’s ability to contact the 

server. Implementing image processing on the phone would 

require writing functions in Java/C++ and using the OpenCV 

function (instead of the MATLAB function) to calculate Hu 

moments. The speed of the application could also be improved 

by caching previous results on the phone. The anagram 

website query step can be skipped if a previous set of letters 

has been queried before.  
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APPENDIX A: CONTRIBUTIONS 

A. Steven Leung 

Steven implemented the pre-processing and letter 

recognition stages of the algorithm in MATLAB. He also 

implemented the application’s anagram solving component in 

Android. 

B. Steffi Perkins 

Steffi implemented the tile extraction stage of the 

algorithm in MATLAB and created a database of template and 

test images. She also characterized the accuracy of the 

algorithm. 

C. Colleen Rhoades 

Colleen developed a prototype of the Android application. 

She designed an interface that could capture an image with the 

phone camera, query a local server that she set up, and display 

the results. 

APPENDIX B: JUSTIFICATION FOR FILLING HOLES IN LETTERS 

An initial attempt of Hu moment-based letter recognition 

(with unfilled letter holes) was not very accurate, as shown in 

the confusion matrix in Fig. B1. The letter G was often 

misclassified as the letter Q and the letter D was misclassified 

as G or Q. This occurred when the L1 distance between the 

extracted G and the Q template was smaller than the L1 

distance between the two Gs—a result of inconsistent Hu 

moments due to inter-tile differences in letter shape. 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ø

A 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D 0 0 0 16 0 0 5 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0

E 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0

H 0 0 0 2 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

J 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 0

Q 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 1

S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 0

T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0

U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 1

V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 1

X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0

Y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 1

Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25

Predicted Letter
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Fig. B1.  Confusion matrix showing letter misclassifications with the test 

images using unfilled letter holes. The column “Ø” corresponds to an error 

when a tile was not extracted due to uneven illumination. The algorithm had 

more misclassifications than when filled letters were used in calculating the 

Hu moments (Fig. 4). Red boxes indicate where letters were misclassified, 
yellow boxes indicate where tiles were not detected, and green indicates that a 

letter was recognized with 100% accuracy. 

 

As outlined in the discussion, this misclassification can be 

explained in terms of normalized central moments, which 

represent the variance of the different letters in the x- and y-

directions. When the distribution of white pixels for the letters 

G and Q are projected onto the x-axis, the circular shapes of 

both letters generate similar probability mass functions, as is 

shown in Fig. B2. The curved tail of the Q and the horizontal 

line in the middle of the G have similar contributions when  

 
Fig. B2.  Comparison of white pixel distributions along the x- and y-axes for 

the G and the unfilled Q. The distributions look similar, especially along the 

x-axis, which may lead to misclassification between the two letters. 

 

Fig. B3.  Comparison of the white pixel distributions along the x- and y-axes 

for the G and the filled Q. The distributions look significantly different, and 

therefore the letters are more easily distinguished by the algorithm. 



 
Fig. B4.  Changes in L1 distance resulting from filling letter holes. Filling the 

holes increased the L1 distance between the letters with holes {A, B, D, O, P, 

Q, R} and other letters of the alphabet, which improved the accuracy of the 

algorithm. Although the L1 distances decreased between letters within the set, 
this did not affect the accuracy of the algorithm in distinguishing between 

those letters. 

projected onto the x-axis. Thus, both letters would have 

similar normalized central moments in the x-direction. 

Likewise, the normalized central moments in the y-direction 

would also be similar. Small structural differences in the 

extracted G (compared to the template G) could make its 

central moments more closely resemble the central moments 

of the Q template. This would influence the L1 distance and 

may therefore also influence the best letter match. 

We found that filling in letter holes avoided problems with 

central moment similarities, which can be seen in Fig. B3. In 

fact, filling in holes for the letter set {A, B, D, O, P, Q, R} 

increased L1 distances between non-set letters, as shown in 

Fig. B4. However, L1 distances decreased between letters 

within the set. Nevertheless, using this new method for Hu 

moment calculation, the algorithm did not return any 

misclassifications between letters in the set. 

APPENDIX C: INVESTIGATION OF OTHER METHODS 

We explored a variety of different methods for image 

processing before ultimately pursuing locally adaptive 

thresholding and Hu moments. These alternatives, along with 

their respective shortcomings, are detailed below. 

D. Pre-Processing 

1) Global Binarization 

Global binarization with Otsu’s method worked well only 

when the image background was much darker relative to the 

letter tiles. In addition, slight changes in scene illumination 

yielded a significant number of artifacts that hindered tile 

extraction. 

2) Laplacian of Gaussian Edge Detector 

Under restrictive conditions (dark background, en face 

image acquisition, and even illumination), we were able to get 

closed contours of tile edges. However, the method was 

unstable with uneven illumination. 

3) Canny Edge Detector 

Also worked under restrictive conditions but was unstable 

with uneven illumination. It was also difficult to select strong 

and weak edge threshold values that were robust across 

different imaging conditions. 

 

 

4) Morphological Edge Detector 

Tile edges were detected by subtracting the original 

grayscale image from its dilated image. However, the method 

failed when tiles were close to one another—image dilation 

caused the boundaries of two tiles to fuse. Problems also arose 

when images had uneven illumination. 

5) Rank Filter Background Subtraction 

The 10th ranked value was selected from 10 x 10 windows 

in order to “capture” uneven illumination on the image. 

However, the algorithm had a very long runtime and was 

ineffective in removing uneven illumination when the result 

was subtracted from the original image. 

E. Tile Extraction 

1) MSERs 

Maximally Stable Extremal Regions worked well for a 

small subset of images given a set of input parameters. 

However, each set of input parameters was not robust across 

different imaging conditions. The method also failed for 

images with uneven illumination. 

F. Letter Recognition 

1) Hit-Miss Filter 

We first attempted to perform letter detection using hit-

miss filter recognition by erosion. However, variations in 

image size and tile alignment were difficult to account for. 

The method was also not invariant to scale and rotation, and 

was therefore quickly deemed impractical. 

2) SIFT Descriptors 

We next attempted to match SIFT feature descriptors 

between tiles and template images. However, very few SIFT 

keypoints were detected due to the lack of texture to the letter 

tiles; thus we were unable to perform RANSAC. Additionally, 

problems arose when images had uneven illumination. 

APPENDIX D: CHALLENGES WITH ANDROID PROGRAMMING 

There were a number of technical obstacles surrounding 

implementation on the Android phone. 

A. Asynchronous Server Tasks 

Because server tasks were asynchronous, there were 

several issues regarding communication timing. The image 

taken by the camera was first processed on a local server using 

MATLAB. MATLAB saves the processed image as well as a 

text file containing the string of recognized letters. A second 

call to the server loads the saved image and string files into the 

phone display. In order for the algorithm to function in the 

correct order, the timing of these server calls had to be 

coordinated to address timing issues. 

B. Wi-Fi Connection 

The Android phone requires access to the anagram-solving 

website through a Wi-Fi or mobile data connection. However, 

the application did not work reliably on all wireless networks. 

Specifically, it works on the Stanford Residences network, but 

not on the Stanford network. 



SUPPLEMENTARY INFORMATION 

A. Leung_Perkins_Rhoades.wmv 

This video demonstration shows how the image processing 

algorithm works on a sample test image in MATLAB. It also 

shows how the final Android application works. Letters were 

misclassified on the phone due to problems with the camera 

autofocus, which is addressed in the future development 

section of the paper. 

B. LeungPerkinsRhoades_AndroidCode.zip 

The code for the Android application is included in this 

archive. 

C. LeungPerkinsRhoades_MatlabCode.zip 

The code for the image processing algorithm in MATLAB 

is included in this archive. 


